Benchmarking of world cities through Self-Organizing Maps
نویسندگان
چکیده
منابع مشابه
Benchmarking of world cities through Self-Organizing Maps
This paper takes for granted the structural urbanisation trend in our world. It argues that there is a global competition among world cities in different parts of our planet. It aims to map out the relative disparities among a preselected set of major global cities by offering a benchmark analysis of these cities on the basis of a recently completed comparative study on their socioeconomic ‘pow...
متن کاملBenchmarking International Pulp and Paper Companies Using Self- Organizing Maps
Performing financial benchmarks in today’s information-rich society can be a daunting task. With the evolution of the Internet, access to massive amounts of financial data, typically in the form of financial statements, is widespread. Managers and stakeholders are in need of a tool allowing them to quickly and accurately analyze this data. An emerging technique that may be suited for this appli...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Visualizing Ontology Components through Self-Organizing Maps
This paper describes a method for identifying Ontology components by using Self-Organizing Maps. Our system represents the knowledge contained in a particular digital archive by assembling and displaying the ontologies components. This novel approach provides an alternative solution to the problem of classifying on-line information and retrieval, support mechanisms that explore domains, and all...
متن کاملGenerating Geometric Models through Self-Organizing Maps
A new algorithm for generating shape models using a Self-Organizing map (SOM) is presented. The aim of the model is to develop an approach for shape representation and classification to detect differences in the shape of anatomical structures. The Self-Organizing map requires specification of the number of clusters in advance, but does not depend upon the choice of an initial contour. This tech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cities
سال: 2013
ISSN: 0264-2751
DOI: 10.1016/j.cities.2012.06.019